A Quasi-Static Method for Large Deformation Problems in Geomechanics
نویسندگان
چکیده
The Finite Element Method (FEM) has become the standard tool for the analysis of a wide range of mechanical problems. However, the classical FEM is not well suited for the treatment of large deformation problems since excessive mesh distortions require remeshing. The Material Point Method (MPM) represents an approach in which material points moving through a fixed finite element grid are used to simulate large deformations. As the method makes use of moving material points, it can be classified as a meshfree method. With no mesh distortions, it is an ideal tool for the analysis of large deformation problems. All existing MPM codes found in literature are dynamic codes with explicit time integration and only recently implicit time integration. In this study, a quasi-static MPM is presented. The paper starts with the description of the quasi-static governing equations, the numerical discretisation and an explanation of calculation procedures. Afterwards, geotechnical boundary-value problems are considered.
منابع مشابه
Development and Application of an ALE Large Deformation Formulation
This paper presents a complete derivation and implementation of the Arbitrary Lagrangian Eulerian (ALE) formulation for the simulation of nonlinear static and dynamic problems in solid mechanics. While most of the previous work done on ALE for dynamic applications was mainly based on operator split and explicit calculations, this work derives the quasi-static and dynamic ALE equations in its si...
متن کاملQuasi-Static Deformation of a Uniform Thermoelastic Half –Space Due to Seismic Sources and Heat Source
This paper investigates the quasi-static plane deformation of an isotropic thermoelastic half-space due to buried seismic sources and heat source. Governing equations of thermo-elasticity are solved to obtain solutions for seismic sources in a thermoelastic half-space. The general solutions are acquired with the aid of Laplace and Fourier transforms and with the use of boundary conditions. The ...
متن کاملFormulations for the Response of Saturated Porous Media: Validity for Geomechanics Problems
Analytical solutions are developed for the response of saturated porous media under twodimensional plane strain condition. Depending on the nature of loading vis-à-vis the characteristics of the media, different formulations (fully dynamic, partially dynamic, quasi-static) are possible. The solutions for these formulations are developed in terms of non-dimensional parameters. The regions of val...
متن کاملLarge deformation analysis of geomechanics problems by a combined rh-adaptive finite element method
Article history: Received 16 April 2012 Received in revised form 16 July 2012 Accepted 19 September 2012 Available online 17 December 2012
متن کاملNon-linear Static Modeling of Moderately Thick Functionally Graded Plate Using Dynamic Relaxation Method
In this paper, nonlinear static analysis of moderately thick plate made of functionally graded materials subjected to mechanical transverse loading is carried out using dynamic relaxation method. Mindlin first order shear deformation theory is employed to consider thick plate. Discretized equations are extracted for geometrically nonlinear behavior analysis.Loading Conditions and boundary condi...
متن کامل